
FlightLinux Project

POSIX Report
Aug 15, 2000

Updated

Sept, 2001

Patrick H. Stakem
QSS Group, Inc.

Revision History

August 15, 2000 Initial Release
August 15, 2001 Revision; updated references; major technical edit
Sept 2001 minor revisions

Introduction

This report is a deliverable of the task NAS5-99124-564. It is associated with the
contract AIST-0083-0075, "FlightLinux Operating System for Use with Spacecraft
Onboard Computers." This report 1) discusses the Portable Operating System Interface
(POSIX) standard, 2) illustrates how the FlightLinux Operating System will be POSIX
compliant, 3) discusses the POSIX-compliant flight software developed by GSFC, Code
582, and 4) documents POSIX references.

The FlightLinux Project is concerned with implementing the Linux Operating system in a
spacecraft onboard computer environment. This report defines what Posix is, what the
advantages are, and how Linux meets the Posix standards. It also defines the ongoing
GSFC efforts to produce Posix-compliant applications code, and to develop coding
guidelines for such code.

The following section explains the role of this report in the larger context of the
FlightLinux Project.

Steps to FlightLinux Implementation

The purpose of this section is to define the reports which will be produced as milestones
in the FlightLinux process, and their interrelationships. The goal of the FlightLinux
Project is an on-orbit flight demonstration and validation of the operating system.

We have defined the steps to a space flight demonstration of the Linux operating system.
Regardless of the implementation architecture, certain pivotal issues must be define. This
will be done in a series of reports. These reference reports will collect together in one
place information and ongoing research related to the topics. The key issues include the
architecture of the target systems, the nature of application software, the architecture of
an onboard LAN, and the requirements for support, the architecture of the onboard
storage system, and the requirements for support, and the nature and design of the
software development testbed.

In the Target Architecture Technical Report, we examine the current, near term, and
projected computer architectures that will be used onboard spacecraft. From this list, we
examine the feasibility and availability of Linux. The choice of the actual architecture for
implementation will be determined more by opportunity of a flight than by choice of the
easiest or most optimum architecture.

The POSIX Report will examine and document the POSIX-compliant aspects of Linux
and other Flight Operating systems, as well as the POSIX-compliant nature of legacy
flight application software. This is an ongoing effort by GSFC Code 582, the Flight
Software Branch.

The Onboard LAN Architecture Report discusses the physical level interfaces on existing
and emerging missions, and the device drivers required to support IP over these

interfaces. Ongoing work in this area is being done by the CCSDS committee, and the
OMNI Project (GSFC, Code 588). The choice of a demonstration flight will define which
interfaces will need to be implemented first. In addition, those interfaces with cots
drivers, and those for which device drivers need to be defined will be delineated.

The Bulk Memory Device Driver Report will define the approach to be taken to
implement the Linux file system in the bulk memory ("tape recorder") of the spacecraft
onboard computer. It will define which elements are COTS, and which need to be
developed.

The Embedded Testbed Report will define the requirements and architecture for the
facility to develop and validate the operating system code for the flight experiment.
Guidance will be drawn from similar past facilities.

These reports will be living documents, updated as required to document new
developments. The reports will be stand-alone, but will reference the other reports as
required. A major purpose of the reports will be to collect in one area the COTS aspects
of the specific aspect of the FlightLinux implementation, so that attention may be focused
on the remaining "missing pieces."

POSIX

POSIX is an IEEE standard for a Portable Operating System Interface [Ref. 3]. The use
of POSIX-compliant operating system and applications has many benefits for flight
software. Among these are software library reuse between missions and software
commonality between ground and flight platforms. For compliant code, the function
calls, arguments, and resultant functionality are the same from one operating system to
another. Source code does not have to be rewritten to port to another environment. Most
Linux variants are mostly but not completely POSIX compliant. The posix standards are
now maintained by an arm of the IEEE called the Portable Applications Standards
Committee (PASC) with the associated website http://www.pasc.org/.

For example, Linux can now support POSIX-like Access Control Lists (ACLs). Access
Control Lists allow specifying fine-grained per-user or per-group permissions for files
and directories. These implement POSIX 1003.1e Draft Standard 17, Access Control
Lists. The Linux kernel has also been updated to support POSIX clock and timer
functions. POSIX shared memory features are not yet fully support in Linux.

POSIX compliance is certified by running a Posix Test Suite, available from the National
Institutes of Standards and Technology (NIST). At the moment, we have no plans for
POSIX compliance testing of various flavors of Linux. We will, however, collect and
document third party and manufacturer's information on Posix compliance.

FlightLinux

FlightLinux addresses the area of operating systems for onboard computers for traditional
and constellation missions. A project website has been set up at the location: http:
FlightLinux.gsfc.nasa.gov .This report, among others, will be found on the site.

The advantages of Linux are numerous, but the requirements for spacecraft flight
software are unique and non-forgiving. Traditional spacecraft onboard software has
evolved from being monolithic (without a separable operating system), to using a custom
operation system developed from scratch, to using a commercial embedded operating
system such as VRTX or VxWorks. None of these approaches have proved ideal. In
many cases, the problems involved in the spacecraft environment require access to the
source code to debug. This becomes an issue with commercial vendors. Cost is also an
issue.

As a variation of Linux and thus Unix, FlightLinux is open source. This means the source
code is not only readily available, it is free. FlightLinux currently addresses soft real time
requirements, and is being extended to address hard real time, for applications such as
attitude control. There is a wide experience base in writing Linux code that is available to
tap.

The use of FlightLinux will simplify several previously difficult areas in spacecraft
onboard software. For example, FlightLinux imposes a file system on onboard data
storage resources. In the best case, Earth-based support personnel and experimenters may
network-mount onboard storage resources to their local file systems. FlightLinux
provides a path to migrate applications onboard and it enforces a commonality between
ground-based and space-based resources.

As the Operating Missions as Nodes on the Internet (OMNI) project at GSFC has
demonstrated, the TCP/IP protocol can be successfully used with orbiting spacecraft.
Support for TCP/IP is built into Linux as a standard feature. Functions such as PING,
FTP, TELNET, and Web services are standard features. FlightLinux also enables the
implementation of an onboard LAN architecture and provides the missing last link in the
end-to-end satellite networking scheme.

We are pursuing the IEEE POSIX compliance issues of standard embedded Linux, in
parallel with an effort in GSFC Code 582, which is collecting a library of POSIX-
compliant flight applications software.

FlightLinux will also enable the implementation of the Java Virtual Machine, allowing
for the uplink of Java applets to the spacecraft.

Real-Time Extensions to Linux

Linux is not by nature or design a real-time operating system. Spacecraft embedded flight
software needs a real time environment in most cases. However there are shades of real-
time, specified by upper limits on interrupt response time, and interrupt latency. We can
generally collect these into hard real time and soft real time categories. Examples of hard
real time requirements would be for attitude control, and spacecraft clock maintenance,
and telemetry formatting. Examples of soft real time requirements would include thermal
control, data logging, and bulk memory scrubbing.

The Unix operating system, on which Linux is based, is a multi-tasking system. Each
process being run is assigned a priority that determines when the process gets resources
and attention from the cpu. In general, a process is running, waiting to run, or asleep. The
key to the operating system task switching, and its real-time response, is the mechanism
by which processes that are not running get to run. Unix, and Linux, were not designed as
real-time operating systems, but do support multitasking. Modifications or extensions to
support and enforce process prioritization are necessary to apply Linux to the embedded
real-time control world.

In one model, a process may yield up the cpu to another pending task. In a preemption
scheme, a running process is stopped, and a pending process is started. In another
scheme, time slicing, a round robin priority scheme allows equal access to all tasks, or a
variation, with a high priority and a low priority queue. It is generally agreed that a
preemptive scheduling scheme allows for greater concurrency in a real time system.

Beyond the process-switching scheme is the interrupt prioritization. Here, we mean
asynchronous interrupts from external sources. Interrupt prioritization is determined and
enforced by the hardware configuration. Also, interrupt servicing supersedes software
process execution in general.

The Lynx Operating System (LynxOS) is produced by LynuxWorks, the company that
also makes BlueCat Linux. LynxOS is not open source, but the LynxOS and BlueCat
Linux products are moving closer together. The problems originate from the fact that the
tradition Unix or Linux kernel is a monolithic entity that governs process prioritization.
Interrupt drivers and the kernel itself do not participate in the prioritization scheme. The
kernel typically has large stretches of non-preemptible code. This is necessarily in the
design so that data structures can be modified in an atomic fashion. In a Linux kernel, all
interrupt handlers run at a higher priority than the highest priority task. In the Unix view,
the kernel is the top level and most important task. In the real-time control world, this is
not necessarily true.

The Linux Scheduler

Before discussing how various RTOSs implement scheduling, taking a look at how Linux
does its scheduling provides an interesting reference point. The scheduler in
/usr/src/linux/kernel/sched.c of the Linux source tree works with three scheduling modes
(which are part of the POSIX standard!): SCHED_RR, SCHED_FIFO and
SCHED_OTHER. SCHED_OTHER is the default. The scheduling mode is set by the
POSIX sched_setscheduler system call.

SCHED_RR is the round-robin time slicing algorithm. After a task finishes its time slice,
it is moved to the tail of its priority queue, such that another task in the same priority
level can start running. If there is no other task at this priority, the interrupted task can
continue.

SCHED_FIFO is a First-In, First-Out scheduling algorithm: the tasks in one priority level
are scheduled in the order they get ready to run; once a task is scheduled, it keeps the
processor until pre-empted by a higher priority task, until it releases the processor
voluntarily, or until it has to wait to get access to some resource. This scheduler mode is
often called “POSIX softreal-time” because it corresponds to the most common real-time
scheduling approach with static priorities, but without the other necessary real-time
components.

SCHED_OTHER tries to combine two conflicting performance measures: maximum
throughput and good response to interactive users. It calculates a “goodness” value for
each candidate task, based on a number of heuristic rules.

Tasks with the SCHED_OTHER scheduling policy receive priority “0”, while the
SCHED_RR and SCHED_FIFO policies can use priority levels from “1” to “99”. User
space tasks have to use the SCHED_OTHER policy. The portable POSIX way to find out
about the minimum and maximum scheduling priorities are the sched_get_priority_min()
and sched_get_priority_max() system calls; they take one of the priority policies as their
argument.

The scheduling for Symmetric Multi-Processor (SMP) systems is basically the same as
for the uni-processor case. What does become more complicated in a system with
multiple processors is the interprocess synchronisation." [Ref. 22]

One approach to correcting the deficiencies in the Linux kernel is to implement a
threaded execution approach for the kernel and the interrupt handlers. The question arises
as to how much the Linux Kernel can be modified, and still be referred to as a Linux
kernel. Another approach is to treat the kernel itself as a scheduled task, under a Real
Time Task manager that manages process prioritization and takes over control of
interrupts. This has been referred to as kernel cohabitation.

At least two real time schedulers for Linux are available for download. These are a Rate
Monotonic Scheduler, that treats tasks with a shorter period as tasks with a higher

priority, and an Earliest Deadline First (EDF) scheduler. Other approaches are also
possible. It is not clear which approach will provide the best approach in the spacecraft
operating environment. This area will continue to be tracked.

POSIX Flight Software

The POSIX Flight Software Project is an effort of GSFC, Code 582 (Flight Software).
Their web site (see reference 1) describes their project plan, their activities, and results.
At this time, a core subset of the MIDEX flight software has already been ported to Posix
compliance and tested. As this project progresses, it is expected that a library of POSIX
compliant flight software routines will be collected and available.

"Linux today is a POSIX-compliant OS and its constituent subsystems support all
relevant ANSI, ISO, IETF and W3C standards. However, certification is a different issue,
and the Linux community is against having to pay standards bodies for something that
doesn't really benefit them. Therefore, Linux is currently in the state of being compliant
with some standards without actually being certified." [Ref. 21]

Future Directions

Linux is evolving in the direction of full POSIX compliance. The GSFC Flight Software
Branch, Code 582, is building a collection of Posix compliant application software.

The question remains, as to how much POSIX-compliance is enough. Complete
compliance with the standard for applications and the operating system is probably not
required nor warranted.

The activities that will be pursued during the course of this project include:

1. Track POSIX compliance of the various flavors of Linux and its embedded and real-
time variations.

2. Track the progress of the POSIX-compliant flight software project of GSFC Code 582.

3. Track the real time characteristics of Linux variations, in conjunction with Code 584.

4. Use this information in the implementation of FlightLinux for flight testing.

REFERENCES

1. http://posixfsw.gsfc.nasa.gov (temporarily, http://mongoose5.gsfc.nasa.gov/posixfsw).

2. http://FlightLinux.gsfc.nasa.gov.

3. http://standards.ieee.org/catalog/posix.html#gen22.

4. http://hegel.ittc.ukans.edu/projects/posix/index.html.

5. http://www.ukuug.org/sigs/linux/newsletter/linux@uk21/posix.html.

6. POSIX threads: http://www.humanfactor.com/pthreads/pthreadlinks.html.

7. http://members.aa.net/~mtp/PCthreads.html.

8. Newmarch, Jan "Unix Systems Programming Using Java," Distributed Information
Laboratory Information Sciences and Engineering, University of Canberra.
http://pandonia.canberra.edu.au/java/posix/paper.html.

9. http://hegel.ittc.ukans.edu/projects/posix/.

10. http://www.pasc.org/.

11. Butenhof, David R., Programming with POSIX Threads, May 1997, Addison-Wesley
Publishing Co, ISBN: 0201633922.

12. Gallmeister, Bill O., POSIX. 4: Programming for the Real World, January 1995,
O'Reilly & Associates, ISBN: 1565920740.

13. A library that provides a VxWorks style interface to Linux Posix Threads:
http://www.gb.nrao.edu/GBT/MC/ygor/libraries/TaskLib/TaskLibdoc.html.

Real Time Linux References

14. Yodaiken, Victor, The RT-Linux Approach to Hard Real-Time, Department of
Computer Science, New Mexico Institute of Technology.
http://www.rtlinux.org/rtlinux.new/documents/papers/whitepaper.html.

15. Epplin, Jerry, "Linux as an Embedded Operating System," Embedded Systems
Programming, Oct. 97. http://www.embedded.com/97/fe39710.html.

16. Rajkumar, Ragunathan, Synchronization in Real-Time Systems: A Priority
Inheritance Approach, Kluwer Academic Publishers, ISBN 0-7923-9211-6, 1991, 208
pp.

17. Mercer, Clifford W., and Ragunathan Rajkumar, "An Interactive Interface and RT-
Mach Support for Monitoring and Controlling Resource Management," Proceedings of
the Real-Time Technology and Applications Symposium, May 1995.

18. Mercer, Clifford W., Jim Zelenka, and Ragunathan Rajkumar, On Predictable
Operating System Protocol Processing Technical Report CMU-CS-94-165, School of
Computer Science, Carnegie Mellon University, May 1994.

19. Mercer, Clifford W., Ragunathan Rajkumar, and Jim Zelenka, "Temporal Protection
in Real-Time Operating Systems," Proceedings of the 11th IEEE Workshop on Real-Time
Operating Systems and Software, May 1994.

20. Tiemann, Michael, "POSIX Eases Route to Embedded Linux," Electronic
Engineering Times (EE Times), 04/09/2001, No. 1161, Pg. 102, Section: EMBEDDED
SYSTEMS -- FOCUS EMBEDDED SYSTEMS CONFERENCE/RTOSes.

21. http://zandura.net/~dustind/propaganda/Guide_To_Linux/guide_to_linux.html.

22. Real Time and Embedded HOWTO,
http://www.mech.kuleuven.ac.be/~bruyninc/rthowto/sched-linux.html.

